
In summary
• Equivalence can be understood as 

a relationship between two things 
that can be swapped for one 
another for a specific purpose

• Equivalence is not just part of 
learning in number or algebra; 
it is useful across mathematics, 
although it is also context-
dependent

• An understanding of equivalence 
involves using it to solve 
problems, to maintain balance 
or equality, to comprehend 
something differently, and using 
the equal sign as a symbol of a 
relationship

• Understanding equivalence can 
be supported by recognising 
that objects and processes in 
mathematics can be represented 
in interchangeable ways, and 
recognising when they are not 
equivalent

• Noticing equivalence allows 
students to substitute one form 
or representation with another, 
which helps to solve a problem, 
including simplifying

• Students can learn about 
equivalence from a very early 
age, and supporting students 
in understanding equivalence 
increases mathematics 
achievement

• It is suggested that students 
use the balance principle (either 
see-saw balance or hanging 
balance) and number line 
models to support exploration of 
equivalence, as well as searching 
for similarities between processes 
(as in the infographic)

The concept of equivalence is, surprisingly, not well agreed-upon in mathematics education, 
especially alongside other ideas such as equality and similarity.1 One useful definition 
of equivalence refers to two quantities, processes, objects, or measures that can be 
exchanged for one another in a particular context or for a specific purpose.2 Equivalence is 
one of the most pervasive and foundational concepts in mathematics, one which emerges 
in many different mathematical areas.1 However, there is a tension between the concept 
of equivalence as powerful and unifying,3 and the way it is used in different contexts, in 
particular the different levels of ‘ignorable difference’ that are acceptable.1 For example, 
whether or not two measures are considered equivalent depends upon the accuracy of 
the physical tool(s) and how the measurements are to be used;4 in statistics, a dataset can 
be considered equivalent to a model if the differences are small enough to be ignored for 
modelling purposes.5 More research on equivalence is needed, alongside better ways to 
support teachers to use that research in practice.1

Implications:
Since definitions of equivalence are not always clear, it may be useful to think of it as a 
relationship between two things that can be substituted for one another for a specific 
purpose

The mathematical idea of equivalence is not just part of learning in number or algebra; it is 
applicable and useful across mathematics

If teachers think about equivalence as both pervasive and context-dependent, it may help 
them to explore its usefulness with students
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Talking point 
What does research 
suggest about 
teaching and learning 
equivalence?
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Some research6 suggests children’s understanding of mathematical equivalence includes problem solving (for example, 3 + 5 + 6 = 3 + __) and 
being able to explain meanings of the equal sign. Understanding mathematical equivalence involves not only understanding the equal sign as a 
relational symbol but also using  symbol sense and relational thinking; for example, recognising the two sides of an equation (or any statement of 
equivalence) as mathematical objects (i.e., interpreting 4 + 3 not only as the operational process of adding 3 to 4 but also as an abstract object in its 
own right that can be manipulated), and then recognising that objects in mathematics, including numbers and expressions, can be represented in a 
variety of interchangeable ways.7 An understanding of equivalence also includes recognising when things are not equivalent.8

Implications:
An understanding of equivalence involves using it to solve problems, and using the equal sign as a symbol of a relationship

Recognising that objects in mathematics (like numbers or expressions) can be represented in a variety of interchangeable ways supports the 
development of an understanding of equivalence
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It is important that students understand why equivalence might be useful: for example, to substitute one form or representation for another which 
helps to solve a problem; to maintain balance or equality; or to comprehend something differently, including simplifying.3 Additionally, using 
equivalent forms of numbers or expressions can help to unify these forms into one idea – such as the fraction, ratio and percentage form of a 
proportion – because “equivalence means that one can use any member of a class of equivalent numbers and, in fact, should select whichever 
representation is most applicable to the task at hand.”3(p130) Recognising equivalent structures within things that are otherwise different also allows 
students to use analogical reasoning (this thing is like that thing) and to simplify, zoom in or out, or abstract.9 Also important is recognising that 
different processes can be considered equivalent if they give the same outcome,8 which supports ideas such as transformations, simulations, 
algebraic reasoning, modelling and conversions between measures.

Implications:
Understanding equivalence allows students to substitute one form or representation for another which helps to solve a problem, to maintain 
a relationship or equality, or to comprehend something differently, including simplifying

Equivalence can be used to solve problems by: understanding that different representations can stand for the same thing; recognising 
features or structures that are the same; recognising that different processes can lead to the same outcome
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Learning about equivalence from a very early stage, even before the equal sign is introduced, can support understanding relationships 
between numbers, numerical and algebraic expressions,10 and increase mathematics achievement.7 Early informal experiences with equivalence 
should include exploring equivalent and non-equivalent situations, using the balance principle to model maintaining equivalence, either see-
saw balances8 or hanging balances,11 as well as using number lines to investigate inverse and equivalent processes8 (as in the infographic). 
Subsequently, encouraging students to search for structural similarities between processes is also suggested as useful; for example, “what is the 
same in the processes for ’34 – 16’ and ‘3 weeks 4 days subtract 1 week 6 days’.”8(p90)

Implications:
Students can learn about equivalence from a very early age, and supporting students in understanding equivalence increases 
mathematics achievement

It is suggested that students use the balance principle (either see-saw balances or hanging balances) and number line models, as well as 
searching for structural similarities between processes, to support exploration of equivalence
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“Equivalence has had many different faces and […] many 
different names”

Asghari, 201913(p4675)

“Recognizing equivalence is a more significant obstacle for students than we and their 
teachers had expected”

Ball et al., 200312(p15)
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